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An Applic chitecture for Large Data 
Visualization: A Case Study 

C. Charles Law, Amy Hendersori 
Kitware Incorporated 

Abstract 

In this case study we present an open-source 
visualization application with a duta-parallel novel 
application architecture. The architecture is unique 
because is uses the Tcl scripting language to synchronize 
the user integuce with the VTK parallel visualization 
pipeline and parallel-rendering module. The resulting 
application shows scalable performance, and is eusily 
extendable becuuse of its simple modulur architecture. 
We demonstrate the application with a 9.8 gigabyte 
structured-grid ocean model. 

1 Introduction 

The ability of nmsively-parallel simulations to generate 
data has outpaced our ability visualize large data sets. 
The size of models generated by distributed simulations 
makes it difficult to collect the results on a single 
computer for visualization. To accommodate, 
simulations save less data for fewer time steps, and 
visualizations are generated lcss often. This solution has 
many unfortunate consequences. Key results can be 
missed or simulations gone awry can run for days before 
the problem is noticed. A simple, effective method for 
visualizing large data sets is needed to analyze the results 
of today’s simulations. 

Climate simulations by the Parallel Ocean Program 
(POP) at the Los Alamos National Laboratory (LANL) 
are a good example of the large-data problem. Current 
simulations are using a 1/10” degree global grid. The 
resulting structured datai set has dimensions 
3600x2400~40. The constanit grid points require -4.1 GB 
when reconstructed, and each 3D attribute requires 
-1.4GB. 10 year simulations with daily time step dumps 
are generating an overwhelming amount of data. Current 
visualization systems are unable to handle data sets of 
this magnitude. 
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This case study discusses recent multiprocessing features 
added to the Visualization ToolKit and how they were 
used to create a turnkey application called Paraview. 
We demonstrate the application running on a 9.8 
gigabyte ocean model. 

2 The Visualization Toolkit 

The Visualization ToolKit’ (VTK) is an open source 
freely available software toolkit for 3D computer 
graphics, image processing and visualization[’41. VTK 
has recently been extended to process visualization tasks 
in parallel[2’81. The demand driven pipeline can now 
operate on pieces of data sets: unstructured as well as 
structured. This allows out-of-core streaming of large 
data over time, and distributing data sets over multiple 
processes for data parallelism. 

In VTK, communication between processes uses a class 
that is implemented on top of MPI (Message Passing 
Interface) and the MPICH libraries. Although much of 
this class’s interface is similar to MPI, other 
communication techniques can be used in place of MPI. 
VTK also has communication classes based on shared- 
memory and sockets, either of which can be 
transparently substituted for MPI based class. On top of 
these low-level communication classes, VTK has also 
implemented remote-method invocations (RMIs), 
marshalling of VTK data sets, and ports to connect 
pipelines in different processes. 

The multi-processing tools in VTK are very general and 
support a variety of parallel techniques, but for the 
application ParaView we only require VTK’s data- 
parallel operation. In VTK’s data-parallel mode, 
identical pipelines are created in every process, and each 
process is assigned a different piece of the data set. The 
pipelines can be connected through ports to collect the 
geometry in a single process for rendering, or the 
geometry can be render local to each process and the 
frame buffers collected with a sort-last compositing 
algorithm. 

’ VTK source and libraries can be downloaded from 
_- Iittn://www.kitware.coni/vtkhtinl/vtkda~~Iow~oGetSo~w~e. hlinl 



Binary tree cornpositing is one simple parallel-rendering 
module that hiis been implemented in VTK. This 
module uses the first process to control interaction, while 
all other processes are waiting for messitges to trigger 
RMI calls. RMIs change pipeline parameters and trigger 
remote renderslcompositing. We chose this technique 
for Paraview's primary rendering mode because the 
large data remains; distributed and scalability is virtually 
unlimited. Using parallel compositing and out-o I-core 
streaming, VTK pipelines (containing iso-surface and 
probe filters) have been dertionstrated on 900 terabytes 
of data distributed across 1024 processorsp1. 

3 Paraview' 

Although VTK is very powerful and can be easily 
scripted, it is only a toolkit. VTK can by itself process 
large data sets, but it is not easy to use. Most scientists 
are unwilling to write visualizations pipelines in C tf or 
Tcl. A turnkey application is needed to klly utilize 
VTK capabilities. We are creating a extendible open- 
source turn-key application called ParaView that is built 
on top of VTK and can processes large data sets in 
parallel. 

Besides usability and scalability, the niost imporlant 
design requirement for ParaView was extendibility. The 
application is open-source and we expected that others 
will contribute filters and rendering modules. The 
architecture had to be simple, so new features could be 
added easily. Any filter that is put into VTK can trivially 
be added to Paraview's user interface. 

For extendibility, we separated the VTK processing 
engine from the user interface (UI). The user-interface 
module runs on the first process and is responsible for 
constructing and synchronizing the duplicate VTK 
pipelines in the satellite processes. Once this is 
achieved, VTK takes €ulK control of the pipeline 
execution and distributed rendering. This division gives 
the application great flexibility. A pipeline created in 
ParaView can be saved and run separately with no 
dependence on the user interface 01 widget libraries. 
Such pipelines would be useful for batch processing, 
run-time visualization, or creating a visualization server. 
This separability and modular approach also means that 
the current widget set and UI architecture could be 
changed if necessary. 

We took an innovative and simple approach to 
synchronizing the distributed pipeline with the user- 
interface module. Inter-process synchronization is 
handled almost exclusively with Tcl scripts. A Tcl 
interpreter, linked to VTK, is running on every process. 

_____I_______.__ 

Instructions for downloading and building ParaView 
can be found at: hi~:llwww.lritware.com/ParaView 

This simplifies the pipeline control to a single method 
called "BroadcastScript(char*)". Since VTK is 
automatically wrapped in Tcl, no special effort was 
needed to create remote interfaces to the many VTK 
filters. 

Unique Tcl command strings are created for each VTK- 
filter and data-object instance. These names are identical 
across all processes so they can be used as identity tags. 
Tcl handles hashing the names internally, so the 
application does not need to manage this task. 

Adding new filters to the application is simple. After the 
filter has been added to VTK, it can easily be put in 
ParaView with a concise text description of its user 
interface. When ParaView starts, it reads a file that 
describes all the VTK filters that will be accessible from 
the application. The description is stored in an XML 
format shown in figure 1. Several widget options are 
available to map filter parameters. These include: 

0 Sliders for clamped values 
0 

0 Option menus 
0 Data set selection menu 
0 File dialogs 

String and numerical entries (multi-element) 

Toggle buttons for Boolean values 

<argument type= '9oat"b root= "Cone"> 
<output class= "vtkPolyData " b 
<variable name="Resolution set="SetResolution "get="GetResolution"> 

<argument type='yoat "b 
</varible> 
<variable name= "Radius " set 
</varible> 
<variable name= "Height" se t = "SetHeight " get= "GetHeight "> 

</varible> 
<variable name= "Capping" set= "SetCapping I' get= "Getcapping " 

<argument type="Jloat'7> 

widget= "check "> 
<argument type="int"b 

</varible> 
</source> 
igure 1: User interfaces for vtkFilters can be define in 

XML and loaded from a file. This interface is for VTK's 
cone source. 

The resulting interfaces are rigid but they allow easy 
access to all of the filters and sources in VTK. To make 
the application easy to use, common filters have special 
UIs, which are accessible directly from icons on the 
toolbar The following filters currently have custom 
interfaces: 

0 Is0 Contouring 
Glyphing 



CuttingjClipping 
0 Thres ho ltiing 
0 Attribute Calculator 

- 
1 Proc. 

Full Resolution 15.6 sec. 
Desmated 0.43 sec. 
Decimated and 0.44 sec. 

Using the Tcl scripting language to control the 
distributed VTK pipeline was a natural choice because 
both the VTK pipeline objects and the user interfwe 
components are wrapped in Tcl. This approach also 
makes it extremely easy to add new components to the 
application. It allows simple text commands to define 
the connection between widgcts and pipeline parameters. 

2 Procs. 4 Procs. 8 Procs. 16 Procs 
8.66 sec. 5.85 sec. 4.32 sec. 4.12 sec. 
1.02 sec. 1.46 sec. 1.84 sec. 2.63 sec. 
0.69 sec. 0.61 sec. 0.65 sec. 0.67 sec. 

3.1 Tcl and the Application Framework 

The application framework i s  a unique blend of Tcl/Tk 
and C++. Tk is used as the widget set, but C++ objects 
are created to encapsulate the widgets and create higher- 
level UI components. Like VTK objects, these C t i -  UI 
objects are automatically wriipped in Tcl, with all public 
methods accessible from the scripting language. Tcl is 
used to communicate between the Tk widgets and the 
C-k+ objects, but is almost completely hidden from the 
developer. This approach takes advantage of the 
callback bindings of TI<, and keeps the object-oriented 
design and eSficiency of C++. 

3.2 Levels 0% Details 
Although our parallel cornpositing module can handle 
any size data, the disadvantage of this approach is that 
rendering rates can be slow. Clusters that do not have 
graphics acceleration on every node must rely on 
software rendering. There is also a fixed cost for 
communicating the frame buffers to the first node for 
display. Although the frame buffers are relatively small, 
the communication occurs at every render. 

To address these issues ParaView has two rendering 
modes: an interactive mode where detail is sacrificed for 
interactive frame rates, and a still mode, which occurs at 
the end of interaction. The still mode always uses tree 
compositing and may take several seconds. A few level- 
of-detail (LOD) techniques have been implemented to 
increase fiame rates for interactive rendering. The 
combination of approaches selected depends on the 
specific capabilities of the cluster. 

LOD techniques have been proven useful for 
interactively rendering other large It must 
be noted that no information is lost with this technique. 
Reduced resolution models are only temporarily 
substituted for the full resolution image while the user is 
interactively changing the view. If the user wants to see 
a full resolution image, they can simply stop the 
interaction (release the mouse button) to cause a render 
in still mode. 

Sub-sampling is the first LOD technique we consider. 
Large rendering windows are often necessary to show all 
the detail of large data sets. When large windows are 
used, the communication of the color and Z buffers 
dominates over the rendering time. For interactive 
rendering, we render and composite smaller windows 
and use pixel replication to magnify the result for final 
display (see figure 3). This technique has also been used 
successfully for ray-cast volume rendering in VTK. 

Rendering large geometry on each individual process can 
also be a bottleneck. This is especially true when using 
software rendering. It this situation, we use a distributed 
decimation algorithm[5761 that quickly generates small 
models to substitute for the original models. The chosen 
algorithm uses a quadric error measure and requires no 
communication between the processes. Table 1 
compares the rendering times of a 1.8 million-triangle 
is0 surface with different LOD techniques and on 
different number of processes. 

When both of these approaches fail to give adequate 
frame rates, the final solution is to transmit the simplified 
geometry to the first process where it can be rendered 
locally. This is the best LOD approach when hardware- 
rendering resources are available only to the first 
process. 

4 Results 

To demonstrate the application we used a POP ocean 
data set based on a 3200x2400~40 structured grid. The 
data has temperature, salinity and flow information for 
each element. The data set consumes -6.3 Gbytes of 
disk, and expands to -9.8 Gbytes of memory when the 
grid points and vertical flow component are 
reconstructed. 

Figure 2 shows the application running on 16 processors 
of a distributed cluster with an ocean data set. An is0 
surface (0.001) of salinity was used for the ocean floor. 
The continents were generate with geometry filter and a 
clip filters. An is0 surface of salinity at 0.0365 was 
taken and colored by ocean temperature. Figure 3 shows 
the same view when using LOD pixel subsampling rate 
of 3x3. 
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Table 2: Scalable performance is demonstrated for three 
VTK filters. The Decimatiom filter reduced 17.3 million 
triangles to 14.8 thousand. I have no explanation for the 
<liner-linear nsrfnrmanrr nf the rlin filtw. 

Table 2 shows scalable performance for four different 
filters used in the pipeline from figure 2. A reduced 
resolution grid with 13 million cells was used to allow 
the pipeline to run efficiently on one process, but the 
decimation filter was tested on a different full resolution 
(3600x2400) model of the ocean surface. 

Figure 4 shows a close up of the Straits of Gibraltar 
where the Mediterranean Sea meets the Atlantic Ocean. 
The 2D cut surface shows salinity values vs. depth. The 
ocean floor and continents were generated in the same 
way as figure 2. 

Figure 5 shows flow in the Atlantic Ocean near the 
Mediterranean Sea. Afcer the ocean floor and continents 
were extracted, the number of sample points was reduced 
with a threshold filter that eliminated points with small 
vector magnitudes. The vectors were further reduced 
with a spatial-exclusion filter. Vectors inhibited 
neighboring samples so that each vector had a sphere 
with no other samples in it. The radii of these spheres 
were scaled try the vector magnitude. A glyph filter was 
then used to display the vectors as arrows, which were 
scaled and colored by the vector magnitude. 

5 Future Work 

Although VTK sources and filters can easily be added to 
Paraview's user interface, not all VTK filters can run in 
a distributed environment or produce piece-invariant 
results. VTK has implemented ghost cells for filters that 
require information about neighboring cells, and a few 
dozen filters in VTK already run in a distributed piece- 
invariant manner. However, more work is required to 
create alternativcs in VTK for filters that cannot be easily 
converted. Connectivity, multi-pass smoothing, and 
streamlines are a few examples of such filters. 

Also, the distributed rendering module currently used in 
ParaView is a rather simple tree-composite algorithm. 
More efficient alternatives hilve to be implemented. A 
couple options include: binary swap coinpositing['", or 
an algorithm that compresses the buffers to reduce 
communication costs[']. h t e  rating a library for 
rendering on large tiled displaysi7! would also be useful. 

6 Conclusion 

In this paper we presented a scalable application 
architecture that is based on data parallelism in VTK and 
has been developed to handle extremely large data sets. 
The use of Tcl interpreters to synchronize the distributed 
pipelines simplifies the application and the addition of 
new features. The open source application "Paraview" 
has been developed using the architecture and was 
demonstrated on a 6.9 GB ocean temperature and salinity 
data set. 
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Figure 3. Pixel Replication LOD usrng the same 
data infigure 2. 
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values varying with depth. Ocean depth is exaggerated. 
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